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Abstract

Safety management in construction is an integral effort and its success requires inputs from all 

stakeholders across design and construction phases. Effective risk mitigation relies on the 

concordance of all stakeholders’ risk perceptions. Many researchers have noticed the discordance 

of risk perceptions among critical stakeholders in safe construction work, however few have 

provided quantifiable evidence describing them. In an effort to fill this perception gap, this 

research performs an experiment that investigates stakeholder perceptions of risk in construction. 

Data analysis confirms the existence of such discordance, and indicates a trend in risk likelihood 

estimation. With risk perceptions from low to high, the stakeholders are architects, contractors/

safety professionals, and engineers. Including prior studies, results also suggest that designers 

have improved their knowledge in building construction safety, but compared to builders they 

present more difficultly in reaching a consensus of perception. Findings of this research are 

intended to be used by risk management and decision makers to reassess stakeholders’ varying 

judgments when considering injury prevention and hazard assessment.
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1. Introduction

Despite advances in technology and implementation of robust safety management and risk 

mitigation techniques, occupational safety and health (OSH) incidents continue to cause 

persistent suffering to the construction industry and its workers. In the United States, 769 

construction workers died in the workplace due to OSH incidents in 2013 (U.S. Bureau of 

Labor Statistics [BLS], 2014). This is unacceptable. These incidents have been shown to 
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arise from well-known hazards, which could be controlled with the implementation of 

known risk mitigation and injury interventions (Kleiner et al., 2008).

Risk mitigation is an integral effort in construction and its success requires inputs from all 

stakeholders including owners, designers, builders, and suppliers (Floyd and Liggett, 2010). 

Such effort is difficult due to a construction project’s fragmented nature with a variety of 

stakeholders across phases from design to construction (McCoy et al., 2009). Stakeholders 

in the construction phase are often targeted as the sole administrators for safety measures 

and implementation (Toole, 2002). For example, in the U.S., design professionals are not 

responsible for specifying means and methods of construction while the contractors need to 

take full responsibility to substantial safety risks on the jobsites. Designers always avoid to 

expose themselves to liability by involving in a construction issue for which they are not 

responsible under the contract. Standard contracts provided by industry authorities also 

recognize this principle and the terms usually include exemptions of designers’ liability that 

associates with the supervision of construction means and methods. However, many injury 

cases in the workplace bring claims against the design. Recent studies (Fleming et al., 2007; 

Gambatese et al., 2008) have revealed that stakeholders in the design phase have great 

influence on OSH as well. High levels of design related concerns can also impact injury and 

fatalities. The design-related OSH in construction can be to as high as 43.9% of fatal injuries 

in construction (Driscoll et al., 2008) and therefore a significant contributor. Godfrey and 

Lindgard (2007) argued that effective safety management requires the risks arising as a 

result of design to be eliminated wherever possible. As a result, productive communication 

and collaboration (Migliaccio and Martinez, 2010) between designers and builders during 

preconstruction stages becomes vital for effective risk mitigation.

Effective risk management rests upon the consensus and collaboration of all stakeholders, 

but such integration is difficult to attain. Godfrey and Lindgard (2007) recognized this 

difficulty and questioned the existence of a unity of purpose with regard to OSH in the 

Architecture, Engineering and Construction (AEC) industry. Toole (2002) conducted a 

survey that has shown the lack of uniform agreement on site safety responsibilities among 

design engineers, general contractors, and subcontractors. Thekdi and Lambert (2014) 

demonstrated that consensus on risk mitigation is difficult to achieve among stakeholders 

within infrastructure projects due to discrepancies in perspective, expertise, and interests.

The authors posit one possible reason for this difficulty as an issue of risk perception from 

individuals or their corresponding roles. Most risk mitigation strategies assume that OSH 

risk is “objective” and can be impartially recognized and perceived (Arezes and Miguel, 

2008), but this assumption can contain challenges. Flin et al. (1996) investigated the risk 

perceptions of offshore workers and found these perceptions are subjective and varied. 

Hallowell (2010) highlighted a significant difference in perceiving risk tolerance between 

construction workers and managers. Ouédraogo et al. (2011) observed that people react 

differently to the same consequences from different hazards and concluded that risk 

perception depends on fear, culture, education, society, and knowledge. However, little 

research has provided solid evidence to the discordance of stakeholder perceptions of risk in 

construction. The aim of this paper is to provide such evidence for AEC stakeholder 

perceptions.
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Understanding risk perceptions in construction is critical, which necessitates research to 

investigate, compare, and contrast stakeholder judgment of risk. Risk perception is 

significantly related to risk behavior, providing an important insight to safety management 

(Rundmo, 1996). Risk analysis injects logic, reason, and scientific deliberation into risk 

management (Slovic and Peters, 2006), making it inappropriate to judge OSH from a 

simplistic and moralistic perspective (Toole and Gambatese, 2008). In the context of 

competing interests and goals, the determination of what OSH measure is acceptable, in 

terms of OSH outcomes, must involve an industry-wide conversation about risk and its 

acceptability from a range of diverse stakeholders (Saunders et al., 2012). As a result, every 

effort is needed to understand all stakeholders’ OSH risk judgments and to develop 

strategies that encourage occupants of safety-critical roles.

This paper presents an experimental study that investigates AEC stakeholder perceptions of 

risk in construction. Specific objectives of the experiment are: (1) to verify whether safety-

critical stakeholder groups have intragroup concordance in perceiving risk; (2) whether they 

have intergroup discordance in perceiving risk; and (3) to identify the discordance if it 

exists. Similar to other studies of risk perception (Slovic, 1987), this study examines the 

judgment made by construction stakeholders when they are asked to characterize hazardous 

conditions or technologies. Here, the writers define the risk as exposure to a hazardous 

condition which may cause work-related injuries, illnesses, and fatalities. The risk is 

measured in terms of the combination of (1) the likelihood of a hazardous event and (2) the 

severity of the hazard when it occurs (Chan et al., 2011; Fleming et al., 2007). Such setting 

is derived from the classic Risk formula: Risk = P * D, with P being the probability of threat 

(i.e., the likelihood) and D the expected damage (i.e., the severity), for quantitative risk 

assessment (Flammini et al., 2011). The experiment uses photographs to elicit responses in 

depicting hazards (Morgan, 2002) because it has been shown that the pictorial nature of a 

graphical risk display ignites stronger associations with risk outcomes (Chua et al., 2006).

2. Method

2.1. Participants

Table 1 provides a summary of participant groups and descriptions. A total of 60 (N=60) 

industry practitioners from four safety-critical AEC stakeholder groups participated in the 

experiment. The four stakeholder groups are architect, engineers, construction contractors, 

and safety professionals. These groupings include all dominant professions who direct or are 

largely engaged in a construction project and are the substantial decision-makers in OSH 

risk. Within the four groups, the architects and engineers are primarily involved in activities 

during the design stage and thus more likely to represent designers. In contrast, contractors 

and safety professionals are primarily involved during the construction stage and more likely 

to represent builders. All participants had more than three years of professional experience 

and were working in the architecture, engineering, and construction (AEC) industry at the 

time of experiment. Their workplaces were geographically varied throughout the United 

States.

The researchers adopted a respondent-driven-sampling (RDS) approach (Heckathorn, 1997) 

to recruit participants. RDS lends statistical rigor to conventional snowball sampling through 
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longer recruitment chains and recruitment limits (Salganik, 2006). Scholars have criticized 

the snowball sampling approach due to its inherent biases that persons of similar 

characteristics are often networked and likely to recruit each other. In contrast, RDS allows 

researchers to make asymptotically unbiased estimates. Moreover, to ascertain 

confidentiality, the researchers provided participants with a unique code (e.g., Arch01, 

Arch02, or Engr01) for profession identity at invitation and they did not necessarily disclose 

their names nor affiliations during the experiment. The Virginia Tech Institutional Review 

Board (IRB) approved the RDS approach and inspected the process under IRB protocol 

#09-701 to ensure the safety of human subjects participating in this research.

2.2. Procedure

The experiment was based on a validated procedure to manipulate risk perceptions on 

building systems (Zhang et al., 2013). As illustrated in Fig. 1, the researchers asked a 

participant to complete the experiment through four steps: 1) log in the online experiment 

system using the given code (e.g., Arch01, Arch02, or Engr01) and then go through 

instructions; 2) sort four sets of total 32 photos (i.e., eight photos each set) based on the 

perceived risk likelihood in an ordinal scale of five categories (i.e., 1 = Rare, 2 = Unlikely, 3 

= Moderate, 4 = Likely, and 5 = Almost certain); 3) sort the same four sets of total 32 photos 

based on the perceived risk severity in another ordinal scale of five categories (i.e., 1 = 

Insignificant, 2 = Minor, 3 = Moderate, 4 = Major, and 5 = Catastrophic); and 4) answer 

follow-up open-ended questions to expand on judgments in the two rounds of photo sorting. 

During the experiment process, a research assistant was available online to answer any 

instruction-related questions. The entire experiment process was vetted under the IRB 

protocol to protect all participants’ rights.

The experiment instrument totaled 32 photos in four sets. Each photo depicted a common 

construction method and its related work condition, in which inherent OSH hazards may 

exist. The participants sorted a photo’s likelihood of being hazards by judging the possibility 

of potential OSH accident in the provided work condition; and also sorted the severity of the 

hazards by judging the consequences of potential OSH accident in the presented work 

condition. To provide a holistic view of possible hazards (see Fig. 1), the researchers first 

broke down a building system into four major sections: Structure, Façade, Roof, and MEP 

systems; and then selected eight photos to represent hazards in the construction of each 

building section. Table 2 summarizes the 32 photos and their descriptions. The instrument 

quality was first validated in a pilot study (Zhang et al., 2013) to maximally retain the 

photos’ representativeness and heterogeneity; its reliability is further measured in the 

following analysis of this study.

Fig. 2 demonstrates the interface of the online experiment system. The researchers designed 

the system using Qualtrics software. In each sorting (a set of eight photos), participants 

needed to carefully observe each image in the photo area and drag it into a perceived risk 

category in the judgment area. With internet connection, participants were able to complete 

the experiment through a choice of multiple devices such as desktops, laptops, tablets, or 

smart phones. Such an online system offers great convenience for participants who were 

geographically located in various places in the United States.
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2.3. Measures

To achieve the research objectives, the authors adopted various measures to analyze the 

collected experiment data. These measures examined both the rating and ranking of photos. 

The measures consisted of three parts: 1) instrument reliability test, 2) intragroup 

comparison, and 3) intergroup comparison. The researchers used SAS software to perform 

all analysis.

The researchers calculated the Cronbach’s Alpha statistic to measure the instrument’s 

reliability (i.e., the internal consistency). An Alpha value of greater than 0.6 indicates 

acceptable reliability and that of greater than 0.7 indicates good reliability (Cronbach and 

Shavelson, 2004).

The researchers calculated the Kendall’s coefficient of concordance for ranks (W) and 

Friedman’s χ2 to measure intragroup concordance. The statistic W describes the degree of 

intragroup agreement among the 15 participants within a stakeholder group when they judge 

risk, in terms of likelihood and severity. When χ2 is significant at a 95% confidence level it 

indicates the existence of intragroup concordance. The statistic W ranges from 0 to 1, 

representing the extent from no agreement to complete agreement.

The researchers performed Wilcoxon Signed-Rank test, Kruskal-Wallis test, and 

Jonckheere-Terpstra Trend test (short as J–T Trend test) to measure the intergroup 

discordance. The Wilcoxon Signed-Rank test determines whether the pairwise stakeholder 

groups have statistically significant discordance of risk perceptions; the Kruskal-Wallis test 

determines whether all the four stakeholder groups as a whole have discordance of risk 

perceptions; and the J–T Trend test investigates how different the perceptions are by testing 

whether an order of perceived risk levels exists among the four stakeholder groups (e.g., θ1 

≤ θ2 ≤ … ≤ θk; θ = perceived risk level).

3. Results

3.1. Reliability Test

Table 3 lists the results of instrument’s reliability tests. All the Cronbach’s Alpha values for 

testing perceptions on risk likelihood were above 0.7, indicating very good internal 

consistency. The Cronbach’s Alpha values for testing perceived risk severity on Façade, 

Roof, and MEP systems were greater than 0.8, also indicating very good internal 

consistency. Only the photos for testing perceived risk severity on Structure was lower (but 

also at an acceptable level) with an Alpha of 0.695. Overall, the results from the Cronbach’s 

Alpha test indicate high reliability of the experiment setting.

3.2. Intragroup Comparison

Table 4 lists the results of Kendall’s W value calculations. The results indicate that all the 

four stakeholder groups have overall intragroup concordance at 99% confidence level (p < 

0.001). When looking at the coefficients, not all degrees of agreement were high-ranging 

between 0.15 and 0.45. Comparatively, architects had the greatest concordance when 

perceiving risk severity (W = 0.418, p < 0.001); and in contrast, contractors contained the 

least concordance when judging the risk likelihood (W = 0.154, p < 0.001). Combining 
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results suggests that each stakeholder group has demonstrated homogeneous within-group 

risk perceptions based on professional characteristics, while the degree of such homogeneity 

is low due to individual differences.

Results in Table 2 also indicate interesting findings when examining the frequency that each 

group achieved agreement. The authors define concordance rate as the count of obtaining 

significant agreement out of the total eight rounds of sorting (i.e., four sections times 

likelihood/severity). In this way, the architects had a high concordance rate of 87.5% (i.e., 

seven in eight sorts); the engineers had a medium concordance rate at 50.0%; the contractors 

had a low concordance rate at 12.5%; and the safety professionals had a fair concordance 

rate at 75.0%. These findings are consistent with their overall intragroup judgment 

performance as discussed in the previous section. Additionally, Roof scenes result in the 

highest concordance rate when its inherent hazards are being judged, while the Façade 

section result in the lowest.

Moreover, the participants reflect a low degree of intragroup concordance and even 

discordance when judging hazards in a few building sections; which the researchers interpret 

as individual differences. As Motowildo et al. (1997) underlined, individual differences lead 

to variability in knowledge, skills, and work habits, which may mediate effects of cognitive 

ability on professional performance.

3.3. Intergroup Comparison

Table 5 presents results of pairwise intergroup comparisons from the Wilcoxon Signed-Rank 

test. When judging the likelihood of potential condition-related injuries, architects 

demonstrated highly significant discordance with all other three stakeholders: the engineers 

(Z = 6.025, p < 0.001), contractors (Z = 5.268, p < 0.001), and safety professionals (Z = 

3.592, p < 0.001). Another observed significant discordance was the pairwise between the 

engineers and contractors (Z = 2.568, p = 0.010). Combining the findings, it suggests that 

designers (i.e., Arch and Engr) and builders (i.e., Cont and Safe) largely differ on the 

likelihood judgment of accidental injuries. In contrast, the tests did not identify any 

significant differences on the severity judgment of accidental injuries from any pairwise 

stakeholder groups. In summary, the findings indicate that the designers and builders judge 

injury probability for a work condition differently, while judge the impact of the injury 

similarly.

Table 6 lists the results of intergroup comparison from the Kruskal-Wallis test. The results 

identified a significant discordance on likelihood perceptions (K = 41.768, p < 0.001) among 

the four stakeholder groups, suggesting they judge OSH risk probability in construction 

differently. In contrast, the results did not identify any significant discordance on severity 

perceptions among the four, suggesting the groups judge OSH risk consequences similarly. 

Such findings are highly consistent with findings from the pairwise intergroup comparisons, 

and further confirm the existence of intergroup discordance on risk likelihood perceptions.

In Table 6, the four stakeholder groups’ rank sum values also indicate the order of perceived 

risk. Based on these rank sum values, the researchers assigned an order number to each 

group (see the Order column in Table 6). A larger order number represents a greater rank 
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sum value and indicates a higher level of risk perception, and vice versa. As a result, 

findings imply an ascending trend of likelihood perceptions from the stakeholders which are 

the architects (lowest with order 1), safety professionals (lower with order 2), contractors 

(higher with order 3), and engineers (highest with order 4). In addition, the authors do not 

consider the trend of severity perceptions in Table 6 since previous findings did not identify 

significant intergroup discordance.

To visualize how the four stakeholder groups are judging risks, the authors plotted all 

participants’ average rating scores in Fig. 3. The quantile box plot (Fig. 3a) confirms the 

previously identified trend and illustrates how the trend of likelihood perceptions performed. 

Accordingly, the architects tended to perceive OSH injuries as unlikely to occur, because 

they contained the lowest median rating score (around 2.5 in a scale of 1–5); the engineers 

tended to judge OSH injuries as likely to happen, because their median rating score was 

slightly above 3.0; and the contractors and safety professionals tended to view risk 

likelihood as moderate, because their median scores were extremely close to 3.0. On the 

other hand, the four stakeholder groups exhibited a tendency of perceiving injury severity as 

moderate to major, because all their median scores were around 3.5 (see Fig. 3b). Such a 

result suggests two interesting findings: 1) it offers an interpretation as to why stakeholder 

groups do not judge risk severity differently; and 2) it validates the experiment quality by 

indicating that all stakeholders (including architects) recognize hazards from the photos and 

are aware of the consequences of possible injuries.

To further verify the trend of likelihood perceptions among the four stakeholder groups, the 

authors performed two rounds of J–T Trend tests. The first test was to determine whether the 

ascending order of architects, safety professionals, contractors, and engineers was significant 

(i.e., Arch ≤ Safe ≤ Cont ≤ Engr); and the second test was to determine whether the 

ascending order of architects, contractors, safety professionals, and engineers was significant 

(i.e., Arch ≤ Cont ≤ Safe ≤ Engr). The first preset order results from the previous intergroup 

comparison. The second preset order results from an observation that the contractors and 

safety professionals contained extremely close values in both ranking mean (see Table 6) 

and rating score (see Fig. 4a). Hence, the researchers also decided to switch orders and 

examine the post-switched order. Table 7 and Table 8 present the results of the two rounds 

of J–T Trend tests, respectively.

Results from Table 7 verified the existence of the first preset order at a 99% confidence 

level (J–T = 846.00, p = 0.009). This trend was particularly significant when the four groups 

judged building sections of Façade (J–T = 803.00, p = 0.029) and MEP systems (J–T = 

881.00, p = 0.003). Results from Table 8 also verified the existence of the second preset 

order at a 99% confidence level (J–T = 845.00, p = 0.009). This trend was particularly 

significant when they judged MEP systems (J–T = 861.50, p = 0.007). Coupling the results, 

it presents solid evidence on the trend of risk likelihood perceptions, suggesting the 

following: 1) architects tend to perceive lower likelihood; 2) engineers tend to perceive 

higher likelihood; 3) contractors and safety professionals tend to perceive similarly medium 

likelihood. It is noteworthy that this study cannot identify which stakeholder group’s 

perception is more accurate or closer to the risk, though.
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4. Discussion

Data analysis confirmed the intragroup concordance and intergroup discordance of risk 

perceptions from construction stakeholders. The results indicate that OSH risks also contain 

“social attributes” in lieu of technological and engineering attributes only. In other words, 

the risks may be perceived subjectively due to the itinerary of interests, roles, opportunities, 

or power differentials, which is interpreted as “social structures” in social science (Archer, 

1995). Social structures together with cultural systems (sets of ideas about what is true or 

false) shape people’s perceptions, actions, their attempts to influence others (Friedman and 

Miles, 2002). People with shared social structures and cultural systems group into 

stakeholders; and hence stakeholders’ perceptions represent their social roles, though they 

can remain independent and subjective. Noteworthy is that social structures are formed and 

transformed within a context of social interaction between people and society, whereby 

individuals are affected by each other (Barge and Luckmcmn, 1967). The findings suggest 

project managers include the social attributes of OSH risks into their considerations when 

make OSH-related decisions.

Findings identified the gaps of risk perception between designers (i.e., architects and 

engineers) and builders (i.e., contractors and safety professionals). The results shown that 

designers have difficulty achieving consensus in safety-related perceptions while builders 

are likely to reach such an agreement. The authors interpret that designers are lack of 

hazards awareness during the construction phase and unfamiliar with OSH control measures 

(Mills, 2009) . From a systems perspective, the OSH risks in the construction phase can 

often be traced back to decisions made by persons who are organizationally and spatially 

removed from the productive work, such as clients, cost planners, suppliers, and design 

contributors. These decisions are often made before construction works have commenced. In 

this work system it is difficult for decision makers to ‘take the perspective’ of persons whose 

OSH could be affected by their decisions. The identified gaps of perception indicate the gaps 

between work system and environmental expectations (Kleiner, 2006); and therefore 

communication interfaces need to be developed between sub-environment personnel and the 

organization. As a result, alignment of objectives and effective communication at the 

interface between subsystems of complex (i.e., differentiated and decentralized) project 

organizations (Du, 2014) are essential to the OSH optimization.

Findings provided quantifiable evidence to the extent of alignment and heterogeneity among 

stakeholders’ understandings of OSH risk and risk control. The builders’ risk assessment 

seems comparatively accurate assuming they thoroughly understand construction means and 

methods. The architects’ risk assessment is low since they often allocate OSH responsibility 

to other stakeholders due to liability exposure (El-Sayegh, 2008; Gambatese et al., 2005). 

The engineers’ risk assessment is comparatively high because they are obligated to ensure 

satisfactory building performance in their design and calculation and hence prone to be 

sensitive to uncertainties. Such evidence facilitates the development of shared mental 

models of OSH (Lingard et al., 2015; Prussia et al., 2003). Shared mental models are 

acknowledged to be a critical determinant of OSH performance and culture but is 

particularly problematic for the fragmented construction industry. Fragmentation and a lack 

of consistency in the technical roles and contractual responsibilities of construction industry 
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participants create differences in orientation and diverse working styles and processes, 

including those related to OSH within the industry. Construction projects are characterized 

by high levels of organizational and cultural differentiation, militating against the 

development of shared mental models and a unity of purpose with regard to OSH risk 

reduction. The identified differentiation among stakeholders helps to establish a “common 

purpose” within organizations and achieve the effective interface of communication.

Findings have practical implications to injury intervention strategy: the prevention through 

design (PtD). Many scholars and practitioners (Toole and Gambatese, 2008; Zhao et al., 

2012, 2014) have advocated PtD as a successful strategy in mitigating OSH hazards. PtD 

adopts approaches of “designing hazards out” at the early design/ planning stage to 

eliminate/reduce the workers’ exposure at the construction stage (Weinstein et al., 2005). 

The “informational difficulties” (Driscoll et al., 2008) identified from the present work may 

hinder the PtD’s implementation if overlooked. Effective OSH risk management relies upon 

decision makers’ capability of recognizing hazards, assessing the implication of these 

hazards, and determining appropriate interventions. The effectiveness can be seriously 

hindered when decision makers differ significantly in their understandings of the nature of 

an OSH hazard and/or opportunities for its control (Zhao et al., 2015). The findings 

contribute to such decision making process by not only alerting the discordance of 

perception but also providing baseline information for decision makers to adjust their risk 

judgments.

Findings also have practical implications to improving construction risk management 

technology. The methodology reported in this work can be developed into a tool that 

measures degree of congruence in OSH attitudes for project team members. The tool can 

also be used in the evaluation of industry efforts to increase the extent to which stakeholders 

take the perspective of others when making safety-critical decisions; for example, when 

assessing the extent to which virtual reality models of the construction process enable 

construction designers to take the perspective of construction workers. The tool also 

provides a useful means for project risk management to review OSH risks during the 

conceptual and detailed design stages.

The researchers acknowledge two specific limitations of the research. One limitation is that 

the researchers did not account for owners’ risk perceptions although they are a key 

stakeholder. Owners are not a profession in the AEC industry and do not necessarily contain 

building construction skills, though. As a result, their backgrounds and corresponding 

judgments may be largely varying and the comparison of their perceptions may be less 

meaningful. Another limitation goes to the experimental instrument. All the photographs 

used in this research pertain to building construction projects and the findings resulting from 

this instrument may be less applicable when referring to other types of construction projects 

(e.g., infrastructure construction).

5. Conclusions

The paper reports on an experimental study that investigates stakeholder perceptions of risk 

in construction. The study analyzed and collected data from 60 participants in the AEC 
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industry, including stakeholder groups of architects, engineers, contractors, and safety 

professionals. Findings reveal that these safety-critical roles in construction projects have 

demonstrated certain degrees of intragroup consensus concerning OSH risk. The resulting 

consensus is consistent with sociological theories and reflects the social structure of 

stakeholders. Findings also reveal that all the stakeholders are able to recognize OSH 

hazards in construction processes yet they have different estimations of risk likelihood. 

Specifically, architects tend to perceive lower probability of incidents, engineers perceive 

higher probability, and contractors and safety professionals contain similar medium 

perceptions. Additionally, findings indicate that designers have improved their knowledge of 

risk in building construction, which is different from prior research.

This work contributes to the body of safety knowledge by providing convincing evidence as 

to discrepancies in stakeholder perceptions. One resulting implication is the acceptance of 

risk’s social attributes which are shaped by multiple influences and inevitably perceived 

differently by occupants of disparate sociotechnical roles. Another implication goes to the 

effective risk management practice in construction. Findings suggest that decision makers 

recognize the risk judgment gaps between designers and builders and appropriately adjust 

them based on the quantifiable evidence identified by this study. Furthermore, the methods 

used in this work contribute to the scientific body of knowledge by introducing an 

innovative research tool for investigating risk attitudes and judgements.

Extending this work could take the form of an investigation into reasons why stakeholders 

perceive risk likelihood differently. The present work has revealed differences in risk 

perceptions yet has not answered the question of why. Future research should also analyze 

the participants’ responses to the follow-up questions of the experiment using techniques 

such as text analysis and factor analysis. As a result, research could explain why risk 

perceptions are different and which whose judgment is more accurate. Results could also be 

used to generate a decision support tool that would help stakeholders assess risk perception 

across teams and stakeholders and help decision makers evaluate the appropriateness of 

design and interventions for risk mitigation.
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Appendix A: Algorithms of Measures

1. Cronbach’s Alpha statistic

The Cronbach’s Alpha statistic estimates the proportion of variance in the test scores that 

could be attributed to true score variance. It is defined in Eq. A. 1.

(A.1)
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where m = number of photos in the instrument (i = 1, 2, …, m); and Si = the rating score of 

the ith photo. Mathematically, the statistic estimates the proportion of variance in the test 

scores that could be attributed to true score variance. Cronbach’s Alpha ranges from 0 to 1, 

representing a degree from complete inconsistency to complete consistency.

2. Kendall’s coefficient

The Kendall’s coefficient of concordance for ranks (W) is defined in Eq. A.2. The statistic W 

ranges from 0 to 1, representing the extent from no agreement to complete agreement

(A.2)

where m = number of photos (i= 1, 2,…, m); n = number of participants within a stakeholder 

group (j = 1, 2, …, n); Ri = the average rank given to the ith photo from all participants; and 

R̅ = the average rank of all photos signed across all participants.

3. Friedman’s χ2

The Friedman’s χ2 statistic is defined in Eq. A.3. It is used to determine the significance of 

Kendall’s coefficient of concordance (W).

(A.3)

where m = number of photos (i= 1, 2,…, m); n = number of participants within a stakeholder 

group (j = 1, 2, …, n); W = Kendall’s coefficient of concordance. Kendall’s W is the 

normalization of Friedman’s χ2 and describes the degree of intragroup concordance.

4. Wilcoxon Signed-Rank (Z)

The Wilcoxon Signed-Rank statistic W is defined in Eq. A.4, and its corresponding Z value 

is defined in Eq. A.5. The statistics are calculated by comparing the mean of signed ranks.

(A.4)

(A.5)

where  = the ith signed positive rank; n’ = the largest number of signed rank.

5. Kruskal-Wallis (K)

The Kruskal-Wallis statistic K is defined in Eq. A.6. It is calculated by comparing the 

summation of ranks.
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(A.6)

where k = number of stakeholder groups (l = 1, 2, …, k); m = total number of photos; ml = 

the number of photos in the lth stakeholder group; and Rl = the rank sum from all photos by 

the lth stakeholder group.

6. Jonckheere-Terpstra Trend (J–T)

The Jonckheere-Terpstra statistic J–T is defined in Eq. A.7.

(A.7)

where k = total number of stakeholder groups (l = 1, 2, …, k; k > 2); and Ul1l2 = the Mann-

Whitney U count (Lehmann and D’Abrera, 2006) between the l1th and l2th stakeholder 

groups.
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Highlights

• This study reports an experiment in examining stakeholder perceptions of risk.

• Findings indicate the “social attributes of risks” in the construction 

management.

• Findings identify the gaps of perceptions between designers and builders.

• Findings obtain the quantifiable extent of perceived risk likelihood: architects, 

contractors/safety professionals, engineers (from low to high).

• Findings have practical implications to the effective risk management in 

construction and the attitude measurement technology.
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Figure 1. 
Experiment procedure and instrument.
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Figure 2. 
Interface example of the online experiment system.
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Figure 3. 
Quantile box plots of average photo rating on (a) Risk likelihood and (b) Risk severity by 

stakeholder group.
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Table 1

Participant Summary

Code Stakeholder
group

Number Description

Arch Architects 15 Licensed architects, with at least five years of experience.

Engr Engineers 15 Structural engineers, mechanical engineers, electrical engineers, and other engineers, with at least 
three years of experience.

Cont Contractors 15 Principle contractors, trade contractors, project managers, site managers, and superintendents, with 
at least five years of experience.

Safe Safety professionals 15 OSHA safety experts, construction safety managers, safety officers, and safety consultants, with at 
least five years of experience.
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Table 2

Instrumental Photos’ IDs and Descriptions

D Description D Description

1 Cast-in-place concrete column placement 1 Metal roof canopies

2 Steel framed structural system 2 Flat cast-in-place reinforced concrete roof with bitumen membrane 
water proofing

3 Precast reinforced concrete tilt-up system 3 Steel roof sheeting system to a frame building

4 Precast reinforced concrete columns, beams, and slab panels 4 Timber rafter system for curved roof panels

5 Reinforced concrete structural frame with post-tensioned 
slabs

5 Tiled roof on timber rafters

6 Steel structural frame with precast concrete decking 
(Hoisting)

6 Plywood sheathings installed to roof trusses.

7 Steel structural frame with steel decking to receive concrete 
cover

7 Pre-assembled timber roof canopy system

8 Reinforcement fixing for cast-in-place concrete slab and 
columns

8 Prefabricated roof systems for offsite built classrooms

1 Precast concrete panel system for housing 1 MEP suspended from steel roof structure

2 Precast concrete panel system for parking garage 2 MEP suspended from concrete structure

3 Concrete and window panel facade system 3 MEP suspended from concrete structure

4 Full story prefabricated facade system 4 MEP suspended from steel structure with spray-on fire retardant

5 Glazed panel facade system 5 MEP suspended from concrete structure

6 Mixed glass and concrete panel façade system 6 MEP suspended from steel panel

7 Cast-in-place reinforced concrete walling 7 Electrical wiring systems

8 Concrete block wall facade system 8 Pre-assembled building service modular installed offsite
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